An AI-Driven Deep Learning Adaptive Curriculum Model (DNCL) for Indonesian Secondary Schools: Evidence from a Single-Site Intervention
##plugins.themes.academic_pro.article.main##
Abstract
Purpose – This study examines the integration of Artificial Intelligence (AI)-driven deep learning as both pedagogy and enabling technology within Indonesia’s middle school Informatics curriculum, responding to the shift from teacher-centered instruction toward adaptive, personalized learning.
Methods – Using an embedded mixed-method design, the study combined a systematic literature review of 50 Scopus-indexed articles (2020–2025) with a 12-week quasi-experimental intervention at SMP Tahta Syajar, Bekasi. The proposed model comprised an AI-literacy-based learning framework, a Deep Neural Curriculum Loop (DNCL), and an adaptive feedback system. Quantitative data (ANCOVA) were triangulated with qualitative evidence from student portfolios and teacher interviews.
Findings – The DNCL model significantly improved student engagement (+27%) and creative problem-solving (+31%) compared to conventional instruction, with large effect sizes for creativity (d = 1.5) and engagement (d = 0.8). AI-supported formative feedback enabled more authentic assessment of 21st-century skills and strengthened human–machine collaboration aligned with the Merdeka Belajar framework.
Research Implications – The findings provide empirical support for AI-driven curriculum innovation in Indonesian secondary education; scalability is limited by teacher readiness, infrastructure variability, and the single-site research design.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abd Rashid, A., Hanif, A., Mohamad Shukri, N. H., & Žugi?, D. (2025). Bridging the Digital Divide in ASEAN: Insights from Vietnam, Philippines, Laos, Cambodia, and Indonesia. Open Research Europe, 5, 220. https://doi.org/10.12688/openreseurope.20260.1
- Al Mashagbeh, M., Alsharqawi, M., Tudevdagva, U., & Khasawneh, H. J. (2025). Student engagement with artificial intelligence tools in academia: a survey of Jordanian universities. Frontiers in Education, 10. https://doi.org/10.3389/feduc.2025.1550147
- Almulla, M. A. (2020). The Effectiveness of the Project-Based Learning (PBL) Approach as a Way to Engage Students in Learning. SAGE Open, 10(3). https://doi.org/10.1177/2158244020938702
- Baker, R. S., & Inventado, P. S. (2014). Educational Data Mining and Learning Analytics. In Learning Analytics: From Research to Practice (pp. 61–75). Springer New York. https://doi.org/10.1007/978-1-4614-3305-7_4
- Borenstein, Michael., Hedges, L. V., Higgins, J. P. T., & Rothstein, Hannah. (2011). Introduction to meta-analysis. John Wiley & Sons Ltd.
- Bramer, W. M., Rethlefsen, M. L., Kleijnen, J., & Franco, O. H. (2017). Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Systematic Reviews, 6(1). https://doi.org/10.1186/s13643-017-0644-y
- Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn Brain, Mind, Experience, and School. National Academies Press. https://doi.org/10.17226/9853
- Bryk, A. S., & Raudenbush, S. W. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). SAGE Publications.
- Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for research. Houghton Mifflin.
- Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: a systematic literature review. In International Journal of STEM Education (Vol. 10, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s40594-023-00418-7
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
- Costa-Silva, J., & Lee-Schoenfeld, V. (2024). Syntactically branching out beyond the traditional classroom: A report on the discovery method. Language, 100(3), e99–e123. https://doi.org/10.1353/lan.2024.a937195
- Creswell, J. W., & Plano Clark, V. L. (2018). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). SAGE Publications.
- Estrada-Molina, O., Mena, J., & López-Padrón, A. (2024). The use of deep learning in open learning: A systematic review (2019 to 2023). The International Review of Research in Open and Distributed Learning, 25. https://doi.org/10.19173/irrodl.v25i1.7195
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. https://www.deeplearningbook.org
- Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S. B., Santos, O. C., Rodrigo, M. T., Cukurova, M., Bittencourt, I. I., & Koedinger, K. R. (2022). Ethics of AI in Education: Towards a Community-Wide Framework. International Journal of Artificial Intelligence in Education, 32(3), 504–526. https://doi.org/10.1007/s40593-021-00239-1
- Hong, Q. N., Pluye, P., Fàbregues, S., Bartlett, G., Boardman, F., Cargo, M., Dagenais, P., Gagnon, M.-P., Griffiths, F., Nicolau, B., Rousseau, M.-C., & Vedel, I. (2018). Mixed Methods Appraisal Tool (MMAT) version 2018: User guide. https://mixedmethodsappraisaltoolpublic.pbworks.com/w/file/127916259/MMAT_2018_criteria_manual.pdf
- Ienca, M., & Vayena, E. (2020). On the responsible use of digital data to tackle the COVID-19 pandemic. In Nature Medicine (Vol. 26, Issue 4, pp. 463–464). Nature Research. https://doi.org/10.1038/s41591-020-0832-5
- Judijanto, L. (2025). A Bibliometric Analysis of Adaptive Learning in K-12 Education. The Eastasouth Journal of Learning and Educations, 3(01), 75–86. https://doi.org/10.58812/esle.v3i01
- Kavitha, K., & Joshith, V. P. (2024). Pedagogical incorporation of artificial intelligence in K-12 science education: A decadal bibliometric mapping and systematic literature review (2013-2023). Journal of Pedagogical Research, 8(4), 437–465. https://doi.org/10.33902/JPR.202429218
- Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia. (2022). Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Nomor 009/H/KR/2022 tentang Dimensi, Elemen, dan Subelemen Profil Pelajar Pancasila pada Kurikulum Merdeka. https://kurikulum.kemdikbud.go.id/
- Lai, W. Y. W., & Lee, J. S. (2024). A systematic review of conversational AI tools in ELT: Publication trends, tools, research methods, learning outcomes, and antecedents. Computers and Education: Artificial Intelligence, 7. https://doi.org/10.1016/j.caeai.2024.100291
- Lee, S. J., & Kwon, K. (2024). A systematic review of AI education in K-12 classrooms from 2018 to 2023: Topics, strategies, and learning outcomes. Computers and Education: Artificial Intelligence, 6. https://doi.org/10.1016/j.caeai.2024.100211
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine (Vol. 6, Issue 7). https://doi.org/10.1371/journal.pmed.1000100
- Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Sage Publications.
- Liu, C. C., Liao, M. G., Chang, C. H., & Lin, H. M. (2022). An analysis of children’ interaction with an AI chatbot and its impact on their interest in reading. Computers and Education, 189. https://doi.org/10.1016/j.compedu.2022.104576
- Long, D., & Magerko, B. (2020, April 21). What is AI Literacy? Competencies and Design Considerations. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3313831.3376727
- Ma, M., Ng, D. T. K., Liu, Z., & Wong, G. K. W. (2025). Fostering responsible AI literacy: A systematic review of K-12 AI ethics education. Computers and Education: Artificial Intelligence (Vol. 8). Elsevier B.V. https://doi.org/10.1016/j.caeai.2025.100422
- Mariana, R. R., & Nurjanah, N. (2023). Teacher Digital Literacy and Instructional Innovation in Southeast Asia: Comparative Insights from Global Educational Systems. Sinergi International Journal of Education, 1(3), 121–137. https://doi.org/10.61194/education.v1i3.583
- Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications.
- Nurhaliza, N., & Dwi Putri Pramesti, G. N. (2025). The Future of Teacher Professional Development: Implementing AI-Driven Microlearning in Southeast. JURNAL DA EDUCAÇÃO, CIÊNCIA E HUMANIORA (JEDUCIH), 1(1), 9–15. https://doi.org/10.64042/jeducih.v1i1.2
- Nurhasanah, S., & Nugraha, M. S. (2024). The Future of Learning: Ethical and Philosophical Implications of Artificial Intelligence (AI) Integration in Education. Indonesian Journal of Multidisciplinary Research, 4(2), 341–352. https://doi.org/10.17509/ijomr.v4i2.78038
- OECD. (2023). PISA 2022 results (Volume I): The state of learning and equity in education. OECD Publishing. https://doi.org/10.1787/53f23881-en
- Page M J, McKenzie J E, Bossuyt P M, Boutron I, Hoffmann T C, Mulrow C D et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews BMJ 2021; 372 :n71. https://doi.org/10.1136/bmj.n71
- Ratri, S. Y., & Aviyanti, L. (2025). Unlocking Digital Literacy in Indonesia: Insights from the Use of Social Media Platforms. Jurnal Prima Edukasia, 13(1), 191–200. https://doi.org/10.21831/jpe.v13i1.83433
- Sanusi, I. T., Oyelere, S. S., Vartiainen, H., Suhonen, J., & Tukiainen, M. (2023). A systematic review of teaching and learning machine learning in K-12 education. Education and Information Technologies, 28(5), 5967–5997. https://doi.org/10.1007/s10639-022-11416-7
- Schaufeli, W.B., Salanova, M., González-Romá, V., & Bakker, A.B. (2002). The Measurement of Engagement and Burnout: A Two Sample Confirmatory Factor Analytic Approach. Journal of Happiness Studies, 3, 71-92.
- Solichah, N., & Shofiah, N. (2023). Artificial intelligence (AI) literacy in early childhood education: A scoping review. Psikologika, 29(2), 173–190. https://journal.uii.ac.id/Psikologika/article/view/33828
- Suryadi, A. F., Amrulloh, M. S., Yani, H. A., Dinarni, D., & Afrizal, A. (2025). Integrating Artificial Intelligence in Secondary Education: A Comparative Study of Pedagogical Readiness and Student Engagement in Southeast Asia. International Journal of Educational Research Excellence (IJERE), 4(2), 661–669. https://doi.org/10.55299/ijere.v4i2.1534
- Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8. https://doi.org/10.1186/1471-2288-8-45
- Torrance, E. P. (2018). Torrance Tests of Creative Thinking (Norms-Technical Manual). Scholastic Testing Service.
- UNESCO. (2023a). Implementation of the current programme and budget (41 C/5): Part II – Results achieved in 2018–2021. United Nations Educational, Scientific and Cultural Organization. https://unesdoc.unesco.org/ark:/48223/pf0000386797
- UNESCO. (2023). The futures we build: A new social contract for education – Implementation part I (41 C/5). United Nations Educational, Scientific and Cultural Organization. https://unesdoc.unesco.org/ark:/48223/pf0000386933_eng
- Veldhuis, A., Lo, P. Y., Kenny, S., & Antle, A. N. (2025). Critical Artificial Intelligence literacy: A scoping review and framework synthesis. International Journal of Child-Computer Interaction, 43. https://doi.org/10.1016/j.ijcci.2024.100708
- Yan, L., Martinez-Maldonado, R., Jin, Y., Echeverria, V., Milesi, M., Fan, J., Zhao, L., Alfredo, R., Li, X., & Gaševi?, D. (2025). The effects of generative AI agents and scaffolding on enhancing students’ comprehension of visual learning analytics. Computers and Education, 234. https://doi.org/10.1016/j.compedu.2025.105322
- Yiling, J., Omar, M., & Kamaruzaman, F. M. (2025). Exploring the AI-Enhanced Project-Based Learning for English Language Acquisition: A Systematic Review of the Key Elements and Emerging Technology Trends. International Journal of Learning, Teaching and Educational Research (Vol. 24, Issue 2, pp. 636–652). https://doi.org/10.26803/ijlter.24.2.31
- Yue, M., Jong, M. S. Y., Dai, Y., & Lau, W. W. F. (2025). Students as AI literate designers: a pedagogical framework for learning and teaching AI literacy in elementary education. Journal of Research on Technology in Education, 1–22. https://doi.org/10.1080/15391523.2025.2449942
- Xingjian (Lance) Gu and Barbara J. Ericson. 2025. AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review. In Proceedings of the 2025 ACM Conference on International Computing Education Research V.1 (ICER '25). Association for Computing Machinery, New York, NY, USA, 125–140. https://doi.org/10.1145/3702652.3744217